
Page 1 of 23

How to identify IBM MQ client connections and stop them

https://www.ibm.com/support/pages/node/616249

Date last updated: 07-Jul-2023

Angel Rivera – rivera@us.ibm.com
 IBM MQ Support

+++ Objective

To provide hints on how to identify specific connections to an IBM MQ queue manager from
IBM MQ Client applications, in order to stop those connections.

IBM MQ client applications can connect to a queue manager through a transport type of
"client" (TCP network), instead of "bindings" (local shared memory).

IBM MQ runmqsc, IBM MQ Explorer and SupportPac MS6B (chstat script) can be set to
identify connections and stop them.

The processes described here have been tested with the following configurations:

1: An MQ JMS client, used by WebSphere Application Server, with the automatic client
reconnect option enabled.

2: The amqsputc sample MQ application, with the automatic client reconnect option
disabled.

3: The amqsphac high availability put sample MQ application, with the automatic client
reconnect option enabled.

4: MQ Explorer, with the automatic client reconnect option disabled.

+++ Acknolwedgements +++

Thanks to Morag Hughson for her suggestions for improving this document.
I appreciate very much for the clarification provided in the following article.

https://mqgem.wordpress.com/2016/06/23/maxchannels-vs-dis-qmstatus-conns/
MaxChannels vs DIS QMSTATUS CONNS
Morag Hughson

https://www.ibm.com/support/pages/node/616249
https://mqgem.wordpress.com/2016/06/23/maxchannels-vs-dis-qmstatus-conns/

Page 2 of 23

++ Summary

If you already have some knowledge and experience in this area, here is a set of example
commands for using runmqsc to identify MQ client connections and stop them:

- To display all the Applications that are connected (both bindings and client), use:
display qmstatus conns

- To display the client applications using a server-connection channel:
display conn(*) where(channel NE '') APPLTAG CHANNEL CONNAME CONNOPTS

- To stop a connection (using the desired connection number from "display conn(*)"):
stop conn(connectionNumberfromDisplayConn)

- To stop a server-connection channel and allow it to be restarted by new connections:
stop channel(channelName) status(INACTIVE)

- To stop a server-connection channel and force it to remain stopped:
stop channel(channelName) status(STOPPED)

- To identify the application that has an IBM MQ queue opened
display conn(*) where(objname eq Q1) type(*) all

- To display the version.release of the applications that are connected via a channel:
DISPLAY CHSTATUS(*) RAPPLTAG RVERSION CONNAME

- To calculate the number of running channels:

 Windows: you can enter the following compound commands.
 echo DISPLAY CHSTATUS(*) | runmqsc QMGR | find /c "AMQ8417"

 UNIX: you can enter the following compound commands.
 echo "DISPLAY CHSTATUS(*)" | runmqsc QMGR | grep -c 'AMQ8417'

++ Update from 16-Oct-2023 ++

This updated revision of this document returns the contents to the original one.
Over the years, many small sections were added to this tutorial and they were cluttering
the contents. Those small sections were moved to a separate document, dedicated to
miscellaneous questions regarding connections and channels.

https://www.ibm.com/support/pages/node/6984195
Collection of articles and FAQs regarding IBM MQ Channels and Connections

https://www.ibm.com/support/pages/node/6984195

Page 3 of 23

++ Important distinction between a "connection" and a "channel instance" (MaxChannels)

a) Total Connections: local (non channel) and client (using a channel instance)

DISPLAY QMSTATUS CONNS

This runmqsc command shows how many connections are currently made into the queue
manager.
This is a count of the number of applications (or some queue manager processes too) that
have made an MQCONN/MQCONNX to the queue manager.
These connections might be local or client connections (which use a channel instance) –
both types contribute to the total.

To see the local connections (no channel) use:
 DISPLAY CONN(*) ALL WHERE(CHANNEL EQ ' ')

To see the remote connections (using channel) use:
 DISPLAY CONN(*) ALL WHERE(CHANNEL NE ' ')

The above commands might be confusing because they use "negative logic".
For example, if the attribute CHANNEL is null/empty (represented by ' ' in the WHERE
clause), then there is NO channel being used, and it is a local connection.
On the other hand, if the attribute CHANNEL is NOT NULL, that is, there is a string in the
attribute CHANNEL, then there is a channel being used.

b) Client Connections that use a channel instance and contribute to MaxChannels

DISPLAY CHSTATUS(*) CURSHCNV

This runmqsc command shows how many running channel instances are made to the queue
manager.

If you add up all the numbers shown in CURSHCNV, then this total will be less than (or equal
to) the number of channel-based connections that are listed when:
 DISPLAY CONN(*) ALL WHERE(CHANNEL NE ' ')

Both queue manager channels and client channels contribute to that total.

This is the number to compare against the attribute MaxChannels of the qm.ini for the
queue manager (the default is 100 and it is not explicitly included in the qm.ini).

Page 4 of 23

++ The chapters are:

Chapter 1: Configuration

Chapter 2: Identifying the clients that are connected through channels from the MQ
Explorer

Chapter 3: Identifying the clients that are connected through channels from runmqsc:
DISPLAY CONN(*) where(channel NE '')

Chapter 4: Identifying the clients that are connected through channels, using 'chstat' from
SupportPac MS6B

Chapter 5: Stopping a connection through MQ Explorer

Chapter 6: Stopping a connection through runmqsc: STOP CONN
+ Scenario 1: Stopping a connection from a client that is not using automatic client
reconnect.
+ Scenario 2: Trying to stop a connection from a client that is using automatic client
reconnect.

Chapter 7: Stopping a connection through runmqsc: STOP CHANNEL STATUS(STOPPED)
+ Scenario 1: Stopping a channel and specifying STATUS(INACTIVE)
+ Scenario 2: Stopping a channel and specifying STATUS(STOPPED)

Page 5 of 23

+++
+++ Chapter 1: Configuration
+++

Even though the functions to identify and to stop the connections have not changed thru
the versions, for completeness, this techdoc uses a variety of MQ versions and fix packs and
multiple operating systems: MQ 9.0, 9.1, 9.2 and 9.3, Windows, Linux x86, C-Based, JMS.

Queue manager in Linux:
 Name: QM93LNX
 Host: reggioni1.fyre.ibm.com at port 1415
 Version: 9.3.0.2

Client type 1:
MQ client in Linux x86-32 (MQ JMS 7.0.1.7 from WAS):
 Host: veracruz.raleigh.ibm.com (9.27.46.236)
 WAS 7.0.0.23 running with MQ JMS 7.0.1.7
 Server-connection channel: SYSTEM.DEF.SVRCONN
 Reconnection note: The MQ JMS client connection from WAS specifies the reconnection
option.

Client type 2:
MQ client in Windows 64-bit (sample amqsputc)
 Host: angelillo.raleigh.ibm.com [9.27.46.181]
 Version: 7.1.0.6
 Server-connection channel: SYSTEM.DEF.SVRCONN
 Commands:
 set MQSERVER=SYSTEM.DEF.SVRCONN/TCP/reggioni1.fyre.ibm.com(1415)
 amqsputc Q1 QM93LNX
 Reconnection note: The amqsphac sample, written in C, does not specify the option for
automatic client reconnection.

Client type 3:
MQ client in Linux x86-64 (high availability put sample amqsphac):
 Host: mosquito.raleigh.ibm.com (9.27.47.38)
 Version: 8.0.0.2
 Server-connection channel: TEST.SVRCONN
 Commands:
 export MQSERVER='TEST.SVRCONN/TCP/reggioni1.fyre.ibm.com(1415)'
 amqsphac Q1 QM93LNX
 Reconnection note: The amqsphac sample, written in C, specifies the following option for
the connection handle:
 cno.Options = MQCNO_RECONNECT; /* reconnectable connection */

Page 6 of 23

Client type 4:
MQ Explorer 9.3.2 in Windows:
 Host: angelillo.raleigh.ibm.com [9.27.46.181]
 Version: 9.3.2.0
 Server-connection channel: SYSTEM.ADMIN.SVRCONN
 Reconnection note: When the MQ Explorer connects to a remote queue manager, does not
use the reconnection option.

Page 7 of 23

+++
+++ Chapter 2: Identifying the clients that are connected through channels from the MQ
Explorer
+++

Start the MQ Explorer.
From the left panel, select the desired queue manager and right click to show the context
menu.
Select "Application Connections...".

Page 8 of 23

You will see a new window that has 2 panels.
The top panel shows all the connections.

Notice that there is a total of 30 connections (which includes both local bindings and client
connections that use channels).

This total can be found via runmqsc as follows:
To display all the connections (both bindings and client), use:

 display qmstatus conns

AMQ8705I: Display Queue Manager Status Details.
 QMNAME(QM93LNX) TYPE(QMGR)
 STATUS(RUNNING) CONNS(30)

Page 9 of 23

Because we need to take a look at the column "Channel name" (which is the 8th column
from the left) and at the column "Conn name" (IP Address, which is the 9th column), it is
recommended that you maximize the window and you click twice on the column title for
"Channel name" in order to sort the values and to show the entries that have a channel
name at the top.

Or you could edit the scheme to move the columns "Channel name" and "Conn name" to the
left (up) in order to minimize the scrolling.

Page 10 of 23

Because the contents of the above screen capture is a bit hard to read, the plain text for
the combined 1st column (App name), 8th column (Channel name) and 9th column (Conn
name) is shown below.

A new column called "Index" is added for the convenience of being able to talk later about
each entry, and referring to the index will facilitate the discussion.
Also, underneath each entry the Connection Options (column number 7) will be included:

Index App name Channel name Conn name

1 IBM MQ client for Java SYSTEM.DEF.SVRCONN 9.27.46.236

 Connection Options: Shared, Share block, Reconnect

2 amqsputc.exe SYSTEM.DEF.SVRCONN 9.27.46.181

 Connection Options: Shared, Share block

3 amqsphac TEST.SVRCONN 9.27.47.38

 Connection Options: Shared, Share block, Reconnect

4 MQ Explorer 9.3.2 SYSTEM.ADMIN.SVRCONN 9.27.46.181

 Connection Options: Shared, Share block

The following has more explanation for each entry:

1: This connection is from the MQ Client from WAS, which is using the MQ classes for JMS
running in host "veracruz.raleigh.ibm.com" with IP address 9.27.46.236. It is a host with
Linux x86
The MQ client for Java is using the reconnect option.
The channel is SYSTEM.DEF.SVRCONN

2: It is from the MQ Client from Windows sample "amqsputc.exe", which is running in host
"angelillo.raleigh.ibm.com" with IP 9.27.46.181. It is a host with Windows.
 It is not using the reconnect option.
The channel is SYSTEM.DEF.SVRCONN

3: It is from the MQ Client high availability sample "amqsphac", which is running in host
"mosquito.raleigh.ibm.com" with IP 9.27.47.38. It is a host with Linux x86-64:
It is using the reconnect option.
The channel is TEST.SVRCONN

4: It is from the MQ Explorer which is running in host "angelillo.raleigh.ibm.com" with IP
9.27.46.181. It is a host with Windows.
It is not using the reconnect option.
The channel is SYSTEM.ADMIN.SVRCONN

Page 11 of 23

+++
+++ Chapter 3: Identifying the clients that are connected through channels from runmqsc:
DISPLAY CONN(*) where(channel NE '')
+++

You can use runmqsc to list all the connections that are connected through a channel.

The following general command will be used:
 display conn(*)

This general command will show both the clients that are connected through bindings
(local) and through client mode (network, using a server-connection channel).

However, to narrow down the list of connections that are connected through a channel,
then we will use the filter 'where' and specify those entries that have a value in the
attribute 'channel name'; that is, where the channel name is not null.
If the value for the attribute 'channel name' is null, then it means that it is a connection
using bindings mode and we are not interested on them in this techdoc.

This type of 'where clause' is a bit tricky because the filter in runmqsc does not have the
SQL equivalent of "where attribute is not null" and thus you have to use the following
WHERE expression:
 ChannelName Not Equals to singleQuote singleQuote
Which translates into:
 where(channel NE '')

Note:
For completeness, the equivalent for "where attribute is null" is:
 where(channel EQ '')

Let's run the desired display conn(*) command with the filter, showing only certain
attributes, in order to get a short output.

$ runmqsc QM93LNX

display conn(*) where(channel NE '') APPLTAG CHANNEL CONNAME CONNOPTS

Note that for readability, I am introducing a separating line between entries.

AMQ8276: Display Connection details.
 CONN(B097365514220020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(CONN)
 APPLTAG(MQ Client for Java) CHANNEL(SYSTEM.DEF.SVRCONN)
 CONNAME(9.27.46.236)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING,MQCNO_RECONNECT)

Page 12 of 23

.
AMQ8276: Display Connection details.
 CONN(B097365501810020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(CONN)
 APPLTAG(MQ_1\bin\amqsputc.exe) CHANNEL(SYSTEM.DEF.SVRCONN)
 CONNAME(9.27.46.181)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)
.
AMQ8276: Display Connection details.
 CONN(B097365503800020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(CONN)
 APPLTAG(amqsphac) CHANNEL(TEST.SVRCONN)
 CONNAME(9.27.47.38)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING,MQCNO_RECONNECT)
.
AMQ8276: Display Connection details.
 CONN(B0973655027F0020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(CONN)
 APPLTAG(MQ Explorer 9.3.2) CHANNEL(SYSTEM.ADMIN.SVRCONN)
 CONNAME(9.27.46.181)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)

For comparison with the shorter output, let's show all the attributes for only one of the
above connections, in that way, you can see most of the attributes.

display CONN(B097365501810020)
AMQ8276: Display Connection details.
 CONN(B097365501810020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(CONN)
 PID(20741) TID(35)
 APPLDESC(IBM MQ Channel)
 APPLTAG(MQ_1\bin\amqsputc.exe)
 APPLTYPE(SYSTEM) ASTATE(NONE)
 CHANNEL(SYSTEM.DEF.SVRCONN) CONNAME(9.27.46.181)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)
 USERID(rivera) UOWLOG()
 UOWSTDA() UOWSTTI()
 UOWLOGDA() UOWLOGTI()
 URTYPE(QMGR)
 EXTURID(XA_FORMATID[] XA_GTRID[] XA_BQUAL[])
 QMURID(0.0) UOWSTATE(NONE)

Page 13 of 23

To show even more data, such as which is the queue to which the application is
connected, you can add: type(all)
In this example, the application is using the queue Q1:
 OBJNAME(Q1) OBJTYPE(QUEUE)

display CONN(B097365501810020) type(all)
AMQ8276: Display Connection details.
 CONN(B097365501810020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(*)
 PID(20741) TID(35)
 APPLDESC(MQ Channel)
 APPLTAG(MQ_1\bin\amqsputc.exe)
 APPLTYPE(SYSTEM) ASTATE(NONE)
 CHANNEL(SYSTEM.DEF.SVRCONN) CONNAME(9.27.46.181)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)
 USERID(rivera) UOWLOG()
 UOWSTDA() UOWSTTI()
 UOWLOGDA() UOWLOGTI()
 URTYPE(QMGR)
 EXTURID(XA_FORMATID[] XA_GTRID[] XA_BQUAL[])
 QMURID(0.0) UOWSTATE(NONE)

 OBJNAME(Q1) OBJTYPE(QUEUE)
 ASTATE(NONE) HSTATE(INACTIVE)
 OPENOPTS(MQOO_OUTPUT,MQOO_FAIL_IF_QUIESCING)
 READA(NO)

NOTES:
.
The following attributes from the output of DISPLAY CONN are not about the channel itself,
but about the client application:
 APPLDESC()
 APPLTAG(MQ Client for Java)

Page 14 of 23

+++
+++ Chapter 4: Identifying the clients that are connected through channels, using 'chstat'
from SupportPac MS6B
+++

Another way to identify the client connections is to use the following SupportPac which
provides a korn shell script (called 'chstat') to list and/or kill all connections to a queue
manager by queue, channel, or IP address.

The script can be downloaded from:
 https://www.ibm.com/support/pages/node/574725
 MS6B: WebSphere MQ Connection Management Utility

For this technical document, the script was downloaded in to the following directory of the
Linux host that has the queue manager:
 /downloads/mq/ms6b

Usage note: You can use the "-example" option to have the syntax for performing most of
the functions provided by the script: chstat -example

The following command shows the connected applications:

$ chstat -mQM93LNX -channel

Total Connections Channel Name Connections By IP Application Tag
21 BINDINGS_CONN
 7 LOCALHOST amqfcxba
 3 LOCALHOST amqfqpub
 1 LOCALHOST amqpcsea
 1 LOCALHOST amqrrmfa
 1 LOCALHOST amqzdmaa
 1 LOCALHOST amqzfuma
 5 LOCALHOST amqzmuf0
 1 LOCALHOST runmqchi
 1 LOCALHOST runmqsc
1 SYSTEM.ADMIN.SVRCONN
 1 9.27.46.181 MQExplorer9.3.2
2 SYSTEM.DEF.SVRCONN
 1 9.27.46.181 MQ_1/bin/amqsputc.exe
 1 9.27.46.236 MQClientforJava
1 TEST.SVRCONN
 1 9.27.47.38 amqsphac

Total Active Channels: 4
Total Active Connections: 25
Total Unique Clients: 4

https://www.ibm.com/support/pages/node/574725

Page 15 of 23

+++
+++ Chapter 5: Stopping a connection through MQ Explorer
+++

Let's terminate the connection from the amqsputc.exe in Windows, which currently looks
like this:

C:\> amqsputc Q1 QM93LNX
Sample AMQSPUT0 start
target queue is Q1
message-1

Notice that one message has been placed in the queue Q1: "message-1"

From MQ Explorer, select the connection for amqsputc.exe and then click on the button
"Close Connection"

Page 16 of 23

You will get a dialog to confirm the stopping of the connection:

Click Yes.

The connection is going to be stopped (no longer active) and it will not appear anymore in
this window from the MQ Explorer.

When looking at the command prompt where the sample is running, it seems that nothing
happened:

C:\>amqsputc Q1 QM93LNX
Sample AMQSPUT0 start
target queue is Q1
message-1

However, if you try to enter another message and press enter at the amqsputc.exe prompt,
then you will get the rc 2009 indicating a broken.

C:\> amqsputc Q1 QM93LNX
Sample AMQSPUT0 start
target queue is Q1
message-1
message-2
MQCLOSE ended with reason code 2009
Sample AMQSPUT0 end

C:\>mqrc 2009
 2009 0x000007d9 MQRC_CONNECTION_BROKEN

Look now at the bottom of the error log for the queue manager, and you will see an error
entry that corresponds to the stopping of the connection:

03/23/2023 04:38:14 PM - Process(20741.5) User(rivera) Program(amqrmppa)
 Host(veracruz) Installation(Installation2)
 VRMF(9.3.0.2) QMgr(QM93LNX)
AMQ9546E: Error return code received.
EXPLANATION:
The program has ended because return code 8409612 was returned from function

Page 17 of 23

+++
+++ Chapter 6: Stopping a connection through runmqsc: STOP CONN
+++

+ Scenario 1: Stopping a connection from a client that is not using automatic client
reconnect.

From Chapter 3, the output from runmqsc for DISPLAY CONN(*) that shows the entry for
amqsputc (which does not use automatic client reconnect) is the following:

AMQ8276I: Display Connection details.
 CONN(B097365501810020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(CONN)
 APPLTAG(MQ_1\bin\amqsputc.exe) CHANNEL(SYSTEM.DEF.SVRCONN)
 CONNAME(9.27.46.181)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING)

To stop that connection, issue the following runmqsc, by copying the connection value from
the above output:

 STOP CONN(B097365501810020)
AMQ8457I: IBM MQ connection stopped.

If you issue again the DISPLAY CONN(*) command, you will see that the number of
connections was decreased from 4 to 3, because the connection from amqsputc is no longer
there.

You can wait around a minute and issue the DISPLAY CONN(*) again. You will notice that the
count remains the same and that there is no entry for amqsputc.

This means that the sample amqsputc has not tried to reconnect, and effectively, its
connection was terminated. Good!

Page 18 of 23

+ Scenario 2: Trying to stop a connection from a client that is using automatic client
reconnect.

From Chapter 3, the output from runmqsc for DISPLAY CONN(*) that shows the entry for
amqsphac (which uses automatic client reconnect) is the following:

AMQ8276I: Display Connection details.
 CONN(B097365503800020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(CONN)
 APPLTAG(amqsphac) CHANNEL(TEST.SVRCONN)
 CONNAME(9.27.47.38)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING,MQCNO_RECONNECT)

Currently the amqsphac application is happily putting messages into the queue:

message <Message 974>
message <Message 975>

Now let's try to stop the connection using the method in the Scenario 1:

STOP CONN(B097365503800020)
AMQ8457I: IBM MQ connection stopped.

And if you quickly issue the DISPLAY CONN(*) again, you will notice that the output will not
show the entry for the connection CONN(B097365503800020) and you may think that the
connection from amqsphac has terminated.

But if you look again at the amqsphac application you will see that because the application
is using automatic client reconnection, the MQ libraries detected the broken connection
and they tried to reconnect, and were able to successfully reconnect!

message <Message 1096>
message <Message 1097>
14:39:27 : EVENT : Connection Reconnecting (Delay: 192ms)
14:39:27 : EVENT : Connection Broken
14:39:28 : EVENT : Connection Reconnected
message <Message 1098>
message <Message 1099>

If you issue again the DISPLAY CONN(*) from runmqsc, you will see that the entry for
amqsphac is back!

But upon closer observation, you notice that the value for CONN is different, because it is
indeed a new connection!

Page 19 of 23

AMQ8276I: Display Connection details.
 CONN(B097365505940020)
 EXTCONN(414D5143514D5F373520202020202020)
 TYPE(CONN)
 APPLTAG(amqsphac) CHANNEL(TEST.SVRCONN)
 CONNAME(9.27.47.38)
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING,MQCNO_RECONNECT)

Hum!

This means that STOP CONN will not effectively terminate the connection from a client
application that is using the option for automatic client reconnect.

Now you have this question: is there a way to terminate the connection from such client
application and prevent the application from trying to reconnect again?

The answer is 'yes' and it is explained in the next chapter.

Page 20 of 23

+++
+++ Chapter 7: Stopping a connection through runmqsc: STOP CHANNEL STATUS(STOPPED
+++

The Scenario 2 from Chapter 6 shows that a client application that uses the automatic
client reconnection cannot be effectively stopped by using the runmqsc command STOP
CONN

One strategy is to allocate a separate server-connection channel for those applications that
use the automatic client reconnection and if necessary, the MQ administrator can stop that
dedicated channel, which in turn will terminate the connection.

However, it is important to specify the proper option for STOP CONN, which is:
 STATUS(STOPPED)

The rest of this document shows 2 scenarios, one with STATUS(INACTIVE) and the other with
STATUS(STOPPED).

+ Scenario 1: Stopping a channel and specifying STATUS(INACTIVE)

In this document, the connection from the high availability sample amqsphac uses the
dedicated server-connection channel named "TEST.SVRCONN".

I used the MQ Explorer to stop that channel:
Selected the desired server-connection channel, right-click and issued: Stop ...
Then specified for New State: "inactive"

This is the equivalent of the following in runmqsc:
 stop channel(channelName) status(INACTIVE)

The running amqsphac application got the following error message:

message <Message 112>
14:12:21 : EVENT : Reason(2202)
MQPUT ended with reason code 2202
Sample AMQSPHAC end

mqrc 2202:
 MQRC_CONNECTION_QUIESCING

And the following entry was logged in the error log of the queue manager:

03/23/2023 03:05:38 PM - Process(20741.28) User(rivera) Program(amqrmppa)
 Host(veracruz) Installation(Installation2)
 VRMF(9.3.0.2) QMgr(QM93LNX)
AMQ9528I: User requested channel 'TEST.SVRCONN' to be stopped.

Page 21 of 23

EXPLANATION:
The channel is stopping because of a request by the user.

OK! It seems that we reached the objective that an MQ administrator can terminate a
connection from a client application.

... but ...

But the user from the remote system may try again to run the client application, and it will
succeed, re-activating automatically the channel and creating a new connection!

rivera@mosquito: /home/rivera
$ amqsphac Q1 QM93LNX
Sample AMQSPHAC start
target queue is Q1
message <Message 1>
message <Message 2>

Thus, the use of STATUS(INACTIVE) will not prevent the remote application from trying
again to contact the queue manager through the dedicated server-connection channel,
which will start automatically.

Question: Is there a way to stop a server-connection channel and prevent that a remote
application restarts that channel?
In order words, it is possible to force a server-connection channel to remain stopped and
not to start automatically?

The answer is 'yes' and it is explained in Scenario 2 below.

Page 22 of 23

+ Scenario 2: Stopping a channel and specifying STATUS(STOPPED)

To ensure that the channel remains stopped and does not restart in response from a new
contact from a remote client, then specify that the new status should be "STOPPED":

I used the MQ Explorer to stop a channel:
Selected the desired server-connection channel, right-click and issued: Stop ...
Then specified for New State: "stopped"
This is the equivalent of:
 stop channel(channelName) status(STOPPED)

Note: The status STOPPED is preserved during the restart of the queue manager.

The running amqsphac application got the following error message 2202
MQRC_CONNECTION_QUIESCING

message <Message 112>
14:12:21 : EVENT : Reason(2202)
MQPUT ended with reason code 2202
Sample AMQSPHAC end

But if the user of the remote system tries to restart the client application will get an error
2537 MQRC_CHANNEL_NOT_AVAILABLE

rivera@mosquito: /opt/mqm80/inc
$ amqsphac Q1 QM93LNX
Sample AMQSPHAC start
MQCONNX ended with reason code 2537
Sample AMQSPHAC end

Then the following entry will be added to the queue manager:

03/23/2023 03:10:03 PM - Process(20741.30) User(rivera) Program(amqrmppa)
 Host(veracruz) Installation(Installation2)
 VRMF(9.3.0.2) QMgr(QM93LNX)
AMQ9534I: Channel 'TEST.SVRCONN' is currently not enabled.
EXPLANATION:
The channel program ended because the channel is currently not enabled.
ACTION:
Issue the START CHANNEL command to re-enable the channel.

Page 23 of 23

+++
+++ Chapter 8: Stopping a connection through SupportPac MS6B
+++

One way to use the chstat script from MS6B to stop a connection is to specify the -kill
option. An example is shown below.

rivera@veracruz: /downloads/mq/ms6b
$ chstat -mQM93LNX -kill -cSYSTEM.DEF.SVRCONN -ip9.27.46.236

Stopping Connections on SYSTEM.DEF.SVRCONN from 9.27.46.236 | total: 2

[Time: 03/23/23-15:55:26] [1] of [2] Stopping CONN(B599265502300020) |
EXTCONN(414D5143514D5F373520202020202020)
[Time: 03/23/23-15:55:26] [2] of [2] Stopping CONN(B5992655132E0020) |
EXTCONN(414D5143514D5F373520202020202020)

+++ end +++

